Irreducible Coverings by Cliques and Sperner's Theorem

نویسنده

  • Ioan Tomescu
چکیده

In this note it is proved that if a graph G of order n has an irreducible covering of its vertex set by n− k cliques, then its clique number ω(G) ≤ k + 1 if k = 2 or 3 and ω(G) ≤ ( k bk/2c) if k ≥ 4. These bounds are sharp if n ≥ k + 1 (for k = 2 or 3) and n ≥ k + ( k bk/2c) (for k ≥ 4).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Isometric Dimension, Biclique Coverings, and Sperner's Theorem

The strong isometric dimension of a graphG is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner’s Theorem, the strong isometric dimension of the Hamming graphs K2 Kn is determined.

متن کامل

COGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS

In this paper we study the notions of cogenerator and subdirectlyirreducible in the category of S-poset. First we give somenecessary and sufficient conditions for a cogenerator $S$-posets.Then we see that under some conditions, regular injectivityimplies generator and cogenerator. Recalling Birkhoff'sRepresentation Theorem for algebra, we study subdirectlyirreducible S-posets and give this theo...

متن کامل

Fixed-Point Theorem, and Cohomology

1. INTRODUCTION. The proof of the Brouwer fixed-point Theorem based on Sperner's Lemma [S] is often presented as an elementary combi-natorial alternative to advanced proofs based on algebraic topology. See, for example, Section 6.3 of [P1]. One may ask if this proof is really based on ideas completely different from the ideas of algebraic topology (and, in particular, the ideas of Brouwer's own...

متن کامل

Clique partitions and clique coverings

Several new tools are presented for determining the number of cliques needed to (edge-)partition a graph . For a graph on n vertices, the clique partition number can grow cn z times as fast as the clique covering number, where c is at least 1/64. If in a clique on n vertices, the edges between en° vertices are deleted, Z--a < 1, then the number of cliques needed to partition what is left is asy...

متن کامل

Clique coverings and partitions of line graphs

A clique in a graph G is a complete subgraph of G. A clique covering (partition) of G is a collection C of cliques such that each edge of G occurs in at least (exactly) one clique in C. The clique covering (partition) number cc(G) (cp(G)) of G is the minimum size of a clique covering (partition) of G. This paper gives alternative proofs, using a unified approach, for the results on the clique c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2002